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A catalytic synthesis of novel 4-linked C-glycosyl coumarins was achieved using a domino Heck reaction/
lactonization process. Methyl 3-glycosyl cinnamates were prepared from methyl 4-glycosyl-but-2-eno-
ates using a panel of aryl iodides under Heck conditions. A direct application of this new methodology
was made toward preliminary hemagglutination inhibition assays against galectins-1 and -3. C-Galacto-
side 30 had an ICs5o of 313 uM against galectin-1.
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Coumarins exhibit a wide range of functions including varied
biological activities.! When coupled to carbohydrate residues, cou-
marins have shown application as antibacterial,? anticoagulant,’
anticancer agents* and as a fluorescent probe for ultrafast DNA
dynamics.® Joining carbohydrates to coumarins via C-C bond,
could provide more valuable and glycosidically stable analogs for
various biological investigations. A large number of glycosyl cou-
marin derivatives, including some with O- or C-glycosidic linkages,
occur naturally.® Figure 1 shows natural products such as Dauro-
side D,” C6 coumarinyl glycoside® and the family presented in this
study. Coumarins can be classically synthesized by the Perkin,!®°
Pechmann,'®'® Knoevenagel® Wittig,!' and Kostanecki-Robin-
son,'? Reformatsky,'> and more recently cross-metathesis'* and
palladium coupling reactions.’> Most methods lack generality
and efficiency, therefore the use of a mild catalytic methodology
to create the coumarin backbone in presence of sensitive func-
tional groups is thus required. The first synthesis of C-glycosyl cou-
marin derivatives was made by Mahling et al.'® and since then,
most of the reports presented the synthesis of C-aryl coumarin gly-
cosidic linkages having the aryl of the coumarins attached at the
anomeric position of the carbohydrate residues.!” However, to
the best of our knowledge, no report on the anomerically 4-C-
linked glycocoumarins is known. To this end, we used a domino
Heck reaction/lactonization process.!® Transition metal-catalyzed
cross-couplings have proven to be powerful tools for mild and
highly efficient carbon-carbon bond formations. Among these pro-
cesses, those involving palladium (Heck) catalysis are particularly
powerful for the synthesis of complex molecules, owing to their
excellent level of selectivity and high functional group tolerance.!®
Consequently and on the basis of previous expertise in our group,'®
the palladium(0)-catalyzed Heck reaction was used to synthesize
C-linked glycomimetics bearing a panel of substituted methyl cin-
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Figure 1. Various coumarin C-glycosides: (a) Dauroside D;” (b) C-5 coumarinyl
glycoside,® and (c) this work.

namate or coumarin derivatives. When carbohydrates are con-
nected with such varied decorations, a large number of diverse
and novel biologically useful glycoconjugates can be generated.?°
In continuation of our interest in the applications of organometallic
catalysis toward the synthesis of carbohydrate analogs,!® we report
herein a convenient synthesis of various C-glycosyl coumarins
using the Heck reaction.

The syntheses were initiated with the known C-allyl mannopy-
ranosides 1,2! 2,2 and C-allyl galactopyranosides 3,2! 4> which
were subjected to a cross-metathesis reaction, using Grubbs’ sec-
ond generation catalyst and methyl acrylate to provide unsatu-
rated esters 5-8, respectively, in yields ranging from 68% to 94%
(Table 1).'°

The next step involved Heck couplings onto unsaturated esters
5-8. The reaction was optimized with respect to the catalyst, base,
phase transfer catalyst, ligand, solvent, temperature, and reaction
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Table 1
Synthesis of unsaturated esters 5-8 from a cross-metathesis reaction catalyzed by
Grubbs’ second generation catalyst starting with C-allyl glycosides 1-4

Table 2
Heck reaction on mannosides 5 and 6 with various aryl iodides 9-12 to provide
methyl cinnamate mannosyls 13-17

Entry Substrates Products Yields® (%)

Entry  Substrates  Aryl halides  Products Yield® (%)

BnO OBn BnO— OBn
BnO (o} BnO! QO
BnO BnO
1 | 82
1

CO,Me
5
AcO—\ QAc AcO—\ QAC
AcO AcOs (]
AcO AcO
2 | 92
2 CO,Me
6
BnO _0Bn BnO _0oBn
Q (o]
BnO BnO
3 BnO BnO 68
3 CO,Me
7
AcO _0OAc AcO _OAc
(o] (o]
Aco&/\/ ACOWCOZMe
4 AcO AcO 94
4 8

2 Yields refer to isolated pure products using methyl acrylate, Grubbs’ second
generation catalyst in refluxing dichloromethane for 3 h.

time. The optimal conditions were found to be Pd(OAc),
(10 mol %), NaHCOs3 (3 equiv), BuyNBr (1 equiv) in DMF (0.16 M)
at 85 °C for 12 h. Having glycosides 5-8 with a diversity of protect-
ing groups and anomeric configurations in hand, we performed the
Heck coupling'® under optimized conditions with a panel of substi-
tuted aryl iodides. Table 2 shows the synthesis of various methyl 3-
mannosylcinnamates 13-17 from unsaturated esters 5 and 6 using
aryl iodides 9-12. C-Mannosides 13-17 were isolated from good to
excellent yields (42-81%). The E-isomers of the double bond were
isolated for all cinnamates except when 4-iodophenol (entry 4)
was used (E/Z ratio of 7:1 as determined by 'H NMR). The stereo-
chemistry of the double bond in mannoside 13 was confirmed by
NOE experiments. The allylic proton and ortho protons from the
phenyl group showed a strong interaction (10%), thus indicating
that the double bond had the E-configuration (entry 1).

Table 3 shows the Heck reaction on C-galactosides 7 and 8 with
aryl iodides 9, 11, and 18. Methyl C-galactosyl cinnamates 19-23
were isolated in 56 to 84% yields. The E-isomers were usually ob-
tained except, again when 4-iodophenol (entry 2) and 3-iodoben-
zyl alcohol (entry 3) were used as aryl partners. In both cases a
2:1 stereoisomeric ratio was obtained in favor of the E-isomers.

When 2-iodophenol 24 and 2-iodophenyl acetate 25 were used
as aryl partners, 4-linked glycosyl coumarins were directly isolated
obviously originating from a Heck reaction followed in situ by a
lactonization process (Table 4). Under standard Heck conditions,
unsaturated esters 5, 7, and 8 were transformed into C-glycosyl
coumarins 26-28 in very good (75%) to good yields (43%). The C-
glycosyl coumarins likely resulted from the standard Heck reaction
with the usual syn B-elimination of the palladium to get the E-iso-
mer, then isomerization of the double bond, under basic reaction
conditions, followed by lactonization.?*

I BnO— OBN
BnO 0
BnO
70
9 -
AcO OAc
AcO Q
2 6 9 AcO
68
| BnO OBn
BnO Q
5 5 BRO OMe
51
OMe !

10

| BnO OBn
BnO Q
BnO
Br | Br g2
12

MeO,C
17

2 Yields refer to isolated pure products using Pd(OAc),, TBABr, NaHCO3, Arl 9-12
in DMF at 85 °C for 12 h.
b E/7 ratio (7:1).

To illustrate the potential usefulness of these new compounds,
some of the above-mentioned unprotected galactosides were eval-
uated as ligands against galectin-1 and -3 (Gal-1 and -3).2° Galec-
tins?® are a family of cytosolic p-b-galactoside binding proteins.
The roles of the galectins family are numerous, but a striking com-
mon feature of all galectins is the strong modulation of their
expression during development, differentiation stages, and under
different physiological or pathological conditions.?” Studies have
demonstrated that Gal-3 is involved in cancer and tumor progres-
sion,?® and can regulate apoptotic process?® together with Gal-13°
which can additionally act as a soluble host factor that promotes
HIV-1 infectivity through stabilization of virus attachment to host
cells.>! Unprotection of acylated galactosides 8, 22, 23, and 28 with
methanolic sodium methoxide afforded free alcohols 29-32,
respectively, in excellent yield.

All compounds and control (p-galactose) were tested by
inhibition of hemagglutination assay at a concentration of 1 uM
of both galectins. Hemagglutination assays were performed using
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Table 3
Heck reaction on C-galactosides 7, 8 with aryl iodides 9, 11, and 18 to provide methyl
3-galactosyl cinnamates 19-23

Table 4
Synthesis of 4-linked coumarin C-glycosyls 26-28 using a domino Heck reaction/
lactonization process

Entry Substrates Aryl halides Products Yield® (%) Entry Substrates Aryl halides Products Yield® (%)
BnO _0oBn | BB?)O Ogn
o} OR n
BnO BnO
1 7 9 BnO 64 1 5 52
| 24 R-0H | o
MeO,C 2 25 R=0Ac
19 O
43
BnO _0OBn BnO_0oBn
BnO OH 0
b BnO
2 7 11 BnO | 84 3 7 24 BnO 75
MeO,C l o
20 ()
4 25 27 48
| BnO _0OBn
Q
BnO AcO _0Ac
3 7 OH BnO o 7P ACO Q
18 | 5 8 24 AcO | o 75
MeO,C
21 o8 ©
6 25 48
AcO _0OAc
o COMe ? Yields refer to isolated pure products using Pd(OAc),, TBABr, NaHCOs, Arl 24
AcO Z and 25 in DMF at 85 °C for 12 h.
4 8 9 AcO 74
P application was made toward evaluation of various unprotected
galactosides against Gal-1 and -3. Galactoside precursor 30 had
ICso of 313 uM against Gal-1.
AcO _0Ac
Acknowledgments
5 8 11

CO,Me
o}
AcO =
AcO 56
OH
23

2 Yields refer to isolated pure products using Pd(OAc),, TBABr, NaHCOs, Arl 9, 11,
18 in DMF at 85 °C for 12 h.
b E/Z ratio (2:1).

red blood cells, type O, fixed with 3% glutaraldehyde-0.0025%
NaNs in PBS?! to confer both lectins equal relative affinities. Galac-
tosides 29, 30, and 32 had ICsps of 5000, 313, and 2500 pLM, respec-
tively, against Gal-1 and were almost all inactive against Gal-3.
Methyl 3-C-galactosyl cinnamate 30 was not only the most prom-
ising candidate (160 times better than natural ligand galactose,
ICso 50 mM) against galectin-1, but was also highly selective com-
pared to Gal-3.32

In conclusion, we described a convenient regioselective cata-
lytic synthesis of C-glycosyl coumarin derivatives using a domino
Heck reaction/lactonization process when 2-iodophenol was used.
When other types of iodoaryl were employed, methyl C-glycosyl
cinnamates were isolated with good stereochemistry control of
the double bond. This method allowed an efficient synthesis of 4-
substituted coumarins bearing carbohydrates in only two catalytic
synthetic steps from readily available C-allyl glycosides. Direct
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